首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A review of the calibration methods for measuring the carbon and oxygen isotopes in CO2 based on isotope ratio infrared spectroscopy
Institution:Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract:With the development of isotope ratio infrared spectroscopy (IRIS) technology, it is now possible for the in situ high temporal resolution and high precision measurement of carbon isotopic composition (δ 13C) and oxygen isotopic composition (δ 18O) of atmospheric CO2, which overcomes the low temporal resolution and labor intensive shortcoming of traditional isotope ratio mass spectrometry (IRMS). The dependence of δ 13C and δ 18O on CO2 concentration (termed as concentration dependence) and the drift due to sensitivity to changing environmental conditions (termed as instrumental drift) are the two main sources of error affecting the IRIS measurements. Therefore, it is important to obtain precise measurements by constructing a proper calibration strategy to solve the concentration dependence and instrumental drift. In this study, we briefly discussed the definition and related theoretical principle of concentration dependence, and elaborated the theoretical and empirical calibration methods of concentration dependence. Moreover, we introduced the calibration methods of instrumental drift, and reviewed the state of the art of calibration methods and its application of IRIS technology. Additionally, we briefly discussed the definition and method of data traceability to the international standard, and reviewed its application of IRIS technology. Finally, we recommend that concentration dependence is corrected by using three standards or above with known CO2 concentration and its δ 13C and δ 18O, bracketing the CO2 concentration of samples. The instrumental drift is corrected by setting appropriate calibration frequency and all dataset are traceable to the international standard. In the future, the comparative study of different IRIS instruments and calibration methods should be enhanced, and the similar methods should be used for measuring CH4, N2O and H2O isotopes by IRIS technique. The IRIS technology combined with other technology will provide a new opportunity for ecological research.
Keywords:isotope ratio infrared spectroscopy    concentration dependence    instrumental drift    traceability to the international standard    calibration frequency
点击此处可从《植物生态学报》浏览原始摘要信息
点击此处可从《植物生态学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号