首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Beta-adrenergic regulation of amiloride-sensitive lung sodium channels
Authors:Chen Xi-Juan  Eaton Douglas C  Jain Lucky
Institution:Department of Pediatrics, Emory University School of Medicine, 2040 Ridgewood Drive NE, Atlanta, GA 30322, USA.
Abstract:We investigated the mechanism by which cAMP increases sodium transport in lung epithelial cells. Alveolar type II (ATII) cells have two types of amiloride-sensitive, cation channels: a nonselective cation channel (NSC) and a highly selective channel (HSC). Exposure of ATII cells to cAMP, beta-adrenergic agonists, or other agents that increase adenylyl cyclase activity increased activity of both channel types, albeit by different mechanisms. NSC open probability (P(o)) increased severalfold when exposed to terbutaline, isoproterenol, forskolin, or cAMP analogs without any change in NSC number. In contrast, terbutaline increased HSC number with no significant change in HSC P(o). For both channels, the effect of terbutaline was blocked by propranolol and H-89, suggesting a protein kinase A (PKA) requirement for beta-adrenergic-induced changes in channel activity. Terbutaline increased cAMP levels in ATII cells, but intracellular calcium also increased. Calcium sequestration with BAPTA blocked beta-adrenergic-induced increases in NSC P(o) but did not alter HSC activity. These observations suggest that beta-adrenergic stimulation increases intracellular cAMP and activates PKA. PKA increases HSC number and increases intracellular calcium. The increase in calcium increases NSC P(o). Thus increased cAMP levels are likely to increase lung sodium transport regardless of which channel type is present.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号