首页 | 本学科首页   官方微博 | 高级检索  
     

小麦与蚕豆间作体系根系形态与磷吸收的定量解析
引用本文:柏文恋,张梦瑶,刘振洋,郑毅,汤利,肖靖秀. 小麦与蚕豆间作体系根系形态与磷吸收的定量解析[J]. 应用生态学报, 2021, 32(4): 1317-1326. DOI: 10.13287/j.1001-9332.202104.027
作者姓名:柏文恋  张梦瑶  刘振洋  郑毅  汤利  肖靖秀
作者单位:1.云南农业大学资源与环境学院, 昆明 650201;2.贵州省林业科学研究院, 贵阳 550005;3.云南开放大学, 昆明 650221
基金项目:国家自然科学基金项目(31760611,32060718,31560581)和云南省农业联合基础专项(2018FG001-071)资助
摘    要:豆科与禾本科作物间作能够改变作物根系生长,但不同施磷水平下间作-根系形态-磷吸收之间的关系尚未明确.本研究通过田间定位试验和根箱模拟试验,研究不同种植模式(小麦单作、蚕豆单作和小麦-蚕豆间作)和不同磷水平下小麦和蚕豆的产量、生物量、磷吸收及根系形态特征,分析探讨不同施磷条件下小麦-蚕豆间作对根系形态和磷吸收的影响.结果...

关 键 词:小麦-蚕豆间作  根系形态  磷吸收  磷水平
收稿时间:2020-10-21

Quantitative analysis of root morphology and phosphorus absorption in wheat and faba bean intercropping system.
BAI Wen-lian,ZHANG Meng-yao,LIU Zhen-yang,ZHENG Yi,TANG Li,XIAO Jing-xiu. Quantitative analysis of root morphology and phosphorus absorption in wheat and faba bean intercropping system.[J]. The journal of applied ecology, 2021, 32(4): 1317-1326. DOI: 10.13287/j.1001-9332.202104.027
Authors:BAI Wen-lian  ZHANG Meng-yao  LIU Zhen-yang  ZHENG Yi  TANG Li  XIAO Jing-xiu
Affiliation:1.College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China;2.Guizhou Academy of Forestry, Guiyang 550005, China;3.Yunnan Open University, Kunming 650221, China
Abstract:The intercropping of legume and cereal crops could affect crop roots growth. The relationship among intercropping, root morphology and phosphorus (P) acquisition under different P levels is still unclear. With field experiments and a rhizo-box experiment, we examined the changes of yield, biomass, P acquisition and root morphology of wheat and faba bean under different planting patterns (monocropped wheat, MW; monocropped faba bean, MF; and wheat and faba bean intercropping, W//F) and different P levels. In the rhizo-box experiment, both root weight and root-shoot ratio were increased by 21.2% and 61.5%, respectively, but shoot weight was decreased by 14.6% when wheat intercropped with faba bean. Root P content and P uptake of intercropping wheat (IW) increased by 23.8% and 12.1% when compared to MW. Both shoot and root weight, root-shoot ratio, total root length, and root volume of intercropping faba bean (IF) increased by 16.5%, 47.3%, 24.0%, 3.5%, and 8.4% as compared to MF, respectively, which resulted in higher shoot and root P content and P acquisition of IF. In the field experiment, P uptake by IW decreased by 8.7% at tillering stage, but P acquisition increased by 40.6%, 19.7%, 7.8% and 12.4% at join-ting, heading, filling, and maturity stages as compared to MW. By contrast, P acquisition of IF decreased by 9.8%, 9.0% and 5.2% at flowering, podding, and maturity stages as compared to MF. Partial least squares (PLS) regression analysis showed that root surface area and total volume of wheat and root surface area of faba bean had the greatest contribution to crop P acquisition. Intercropping induced higher root volume and root surface area which resulted in higher P acquisition under low P stress. In conclusion, interspecific interaction amplified the root-soil interface zone and increased P uptake at seedling stage under low P stress, which could contribute to the intercropping advantages at later stage.
Keywords:wheat and faba bean intercropping  root morphology  P uptake  P level  
本文献已被 CNKI 等数据库收录!
点击此处可从《应用生态学报》浏览原始摘要信息
点击此处可从《应用生态学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号