首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The supply of metabolic substrate from glia to photoreceptors in the retina of the honeybee drone
Authors:M Tsacopoulos  J A Coles  G Van de Werve
Institution:Université de Genève, Département d'oto-neuro-ophtalmologie, Genève, Switzerland.
Abstract:1. The drone retina is composed essentially of only two types of cells: a population of identical photoreceptor cells occupying 38% of the volume is embedded in a syncytium of glia (called outer pigment cells). Nearly all the mitochondria are in the photoreceptors. 2. A retinal slice consumes 18 microliter O2 (ml tissue)-1 min-1 in the dark for up to 6 h, even without exogenous substrate; in 6 h this would require the equivalent of 127 mM glucose in the photoreceptors or 8.7 mg glycogen (ml tissue)-1. 3. Freshly dissected retinas contain about 45 mg glycogen (ml tissue)-1, but this appears, from electron micrographs and from the PAS reaction, to be exclusively in the glia. After superfusion with substrate-free Ringer solution for 30 min, slices of retina contained less than 20 microM glucose. It therefore appears that to sustain respiration, carbohydrate substrate must be transferred from the glia to the photoreceptors. 4. Even after 6 h superfusion with substrate-free Ringer solution O2 consumption (QO2) was not increased by exogenous glucose, pyruvate, trehalose or lactate, nor decreased by 2-deoxy-D-glucose. QO2 was increased 2-3 fold by either light stimulation or (for at least 20 min) by 50 microM dinitrophenol. 5. QO2 was only slightly reduced when Na-dependent glucose transport was inhibited either by reduction of extracellular Na+], or the presence of phlorizin. 6. It is suggested that drone retinal function does not require the uptake of glucose by the photoreceptors, but that the glia do take up glucose.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号