首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Bacterial expression and characterization of a cDNA for human liver estrogen sulfotransferase
Authors:Charles N Falany  Victor Krasnykh  Josie L Falany
Institution:

Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, U.S.A.

Abstract:A distinct human estrogen sulfotransferase (hEST-1) cDNA has been isolated from a human liver γZap cDNA library using a PCR procedure. The enzymatically active protein has been expressed in two bacterial expression systems and the kinetic and immunologic properties of the enzyme have been characterized. The full-length cDNA for hEST-1 is 994 base pairs in length and encodes a 294 amino acid protein with a calculated molecular mass of 35,123 Da. Purified hEST-1 migrated with an apparent molecular mass of 35,000 Da during SDS-polyacrylamide gel electrophoresis. Immunoblot analysis of hEST-1 expressed in E. coli with a rabbit anti-hEST-1 antibody yields a band of approximately 35,000 Da. The anti-hEST-1 antibody also detects a single band in human liver and jejunum cytosol which migrates with the same molecular mass as expressed hEST-1. There was also no cross-reactivity of hEST-1 with rabbit anti-hP-PST or rabbit anti-hDHEA-ST antibodies upon immunoblot analysis. hEST-1 was expressed in bacteria and purified to homogeneity. Expressed hEST-1 activity has a significantly greater affinity for estrogen sulfation than that found for the other human STs which conjugate estrogens. hEST-1 maximally sulfates β-estradiol and estrone at concentrations of 20 nM. hEST-1 also sulfates dehydroepiandrosterone, pregnenolone, ethinylestradiol, and 1-naphthol, at significantly higher concentrations; however, cortisol, testosterone and dopamine are not sulfated. The results presented in this paper describe the expression and characterization of a human EST distinct from other human STs which sulfate estrogens. The high affinity of hEST-1 for estrogens indicates that this ST may be important in both the metabolism of estrogens and in the regulation of their activities.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号