首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ca 2+-induced self-assembly in designed peptides with optimally spaced gamma-carboxyglutamic acid residues
Authors:Dai Qiuyun  Dong Mingxin  Liu Zhuguo  Prorok Mary  Castellino Francis J
Institution:
  • a Institute of Biotechnology, Beijing 100071, China
  • b Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA
  • c W.M. Keck Center for Transgene Research, University of Notre Dame, IN 46556, USA
  • Abstract:We have previously elucidated a new paradigm for the metal ion-induced helix-helix assembly in the natural γ-carboxyglutamic acid (Gla)-containing class of conantokin (con) peptides, typified by con-G and a variant of con-T, con-TK7Gla], independent of the hydrophobic effect. In these “metallo-zipper” structures, Gla residues spaced at i, i + 4, i + 7, i + 11 intervals, which is similar to the arrangement of a and d residues in typical heptads of coiled-coils, coordinate with Ca2+ and form specific antiparallel helical dimers. In order to evaluate the common role of Gla residues in peptide self-assembly, we extend herein the same Gla arrangement to designed peptides: NH2-(γLSγEAK)3-CONH2 (peptide 1) and NH2-γLSγEAKγLSγQANγLSγKAE-CONH2 (peptide 2). Peptide 1 and peptide 2 exhibit no helicity alone, but undergo structural transitions to helical conformations in the presence of a variety of divalent cations. Sedimentation equilibrium ultracentrifugation analyses showed that peptide 1 and peptide 2 form helical dimers in the presence of Ca2+, but not Mg2+. Folding and thiol-disulfide rearrangement assays with Cys-containing peptide variants indicated that the helical dimers are mixtures of antiparallel and parallel dimers, which is different from the strict antiparallel strand orientations of con-G and con-TK7γGla] dimers. These findings suggest that the Gla arrangement, i, i + 4, i + 7, i + 11, i + 14, plays a key role in helix formation, without a strict adherence to strand orientation of the helical dimer.
    Keywords:gamma-carboxyglutamic acid  Helix-helix interactions  Peptide self-assembly
    本文献已被 ScienceDirect PubMed 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号