首页 | 本学科首页   官方微博 | 高级检索  
     


Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro
Authors:Mareke Hartig  Ulrich Joos  Hans-Peter Wiesmann
Affiliation:Klinik und Poliklinik für Mund- und Kiefer-Gesichtschirurgie, Westf?lische Wilhelms-Universit?t, Waldeyerstrasse 30, 48149 Münster, Germany,
Abstract:Over the last few years, electric and electromagnetic fields have gained more and more significance in the therapy of bone fracture healing and bone disease. Yet, the underlying mechanisms on a cellular and molecular level are not completely understood. In the present study we have investigated the effects of capacitively coupled, pulsed electric fields on cellular proliferation, alkaline phosphatase activity, and matrix protein synthesis of osteoblast-like primary cells in vitro. Cells were derived from bovine periosteum and electrically stimulated by saw-tooth pulses of 100 V external voltage and 16 Hz frequency. This corresponds to an electric field of 6 kV/m across the cell membranes as could be shown by computer simulation. Field application caused acceleration of cell culture development. A significant increase of proliferation concurrent with an enhancement of alkaline phosphatase activity was observed in sub-confluent cultures. Exposure of confluent osteoblast-like primary cells to electric fields resulted in enhanced synthesis and secretion of extracellular matrix-related proteins. These findings suggest that capacitively coupled electric fields accelerate bone cell proliferation and differentiation in vitro and enhance the synthesis of cells leading to promoted matrix formation and maturation.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号