首页 | 本学科首页   官方微博 | 高级检索  
     


Filaggrin, an intermediate filament-associated protein: structural and functional implications from the sequence of a cDNA from rat.
Authors:P V Haydock  B A Dale
Affiliation:Department of Periodontics, University of Washington, Seattle 98185.
Abstract:Filaggrin is an intermediate filament-associated protein that is involved in aggregation of keratin filaments in fully cornified cells of the mammalian epidermis, and is an important marker for epidermal differentiation. In this report, the sequence of a rat cDNA clone coding for a portion of the polymeric precursor, profilaggrin, is presented. The cDNA is 2,314 bp long with 1,875 bp of coding region ending with an A-T-rich 3' noncoding region. Genomic analysis indicates that the profilaggrin gene consists of 20 +/- 2 repeats of 1,218 bp of sequence coding for 406 amino acids, making the mRNA at least 25-27 kb in length. Each repeat consists of a filaggrin domain and a linker sequence with an estimated size of 380 and 26 amino acids, respectively. High levels of profilaggrin mRNA are found only in keratinizing epithelia. Comparison of the rat filaggrin sequence with that of mouse and human filaggrin and with the sequence of phosphorylated peptides from mouse profilaggrin indicates that the proteins share extensive amino acid sequence similarities, especially in the two phosphorylated regions. Proteolytic processing sites are also quite similar in rat and mouse. The three species show blocks of sequence that are similar in length and composition which alternate with sequences that are variable in length. This analysis suggests that the evolution of the present-day filaggrins has been constrained by maintenance of phosphorylation sites and overall amino acid composition. The cDNAs for the profilaggrins are similar in structure, reflecting genes that have simple repeating structures and lack introns within their coding regions. Mouse and rat profilaggrin terminate with a nonpolar sequence atypical of the rest of the coding region, and have similar 3' noncoding regions. To explain these observations, a novel evolutionary model is proposed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号