首页 | 本学科首页   官方微博 | 高级检索  
     


Correlation between broth microdilution and disk diffusion methods for antifungal susceptibility testing of caspofungin, voriconazole, amphotericin B, itraconazole and fluconazole against Candida glabrata
Authors:N. Kiraz  I. Dag  M. Yamac  N. Kasifoglu
Affiliation:a Department of Microbiology, Medical Faculty, University of Eskisehir Osmangazi, Eskisehir, Turkey
b Healthcare Services Vocational High School, University of Eskisehir Osmangazi, Eskisehir, Turkey
c Department of Biology, Faculty of Art and Science, University of Eskisehir Osmangazi, Eskisehir, Turkey
Abstract:Candida glabrata is one of the most frequent organisms isolated from superficial and invasive fungal infections, after Candida albicans. This organism also exhibits intrinsically low susceptibility to azole antifungals and treatment often fails. The microdilution method is not very practical for use in routine susceptibility testing in the clinical laboratory, thus necessitating the use of other methods. In this study, we compared the in vitro activity of five antifungal agents in three different groups (echinocandin, polyene and azole) against 50 C. glabrata isolates by broth microdilution and disk diffusion methods recommended by Clinical Laboratory Standards Institute CLSI M27-A3 and CLSI M44-A, respectively. All the isolates were susceptible to amphotericin B (100%) and 98% of the isolates were susceptible to caspofungin by the broth microdilution method. Within the azole group drugs, voriconazole was the most active followed by fluconazole and itraconazole in vitro. The highest rate of resistance was obtained against itraconazole with a high number of isolates defined as susceptible-dose dependent or resistant. Although the disk diffusion method is easy to use in clinical laboratories, it shows very poor agreement with the reference method for fluconazole and itraconazole against C. glabrata (8% and 14%, respectively).
Keywords:Antifungal susceptibility method   Azole resistance   Candida glabrata   Antifungal   Disk diffusion   Broth microdilution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号