首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling
Authors:Paramjit K Bajwa  Vincent JJ Martin  Hung Lee
Institution:a School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
b Biology Department, Concordia University, Montréal, Québec, Canada H4B 1R6
Abstract:Genome shuffling based on cross mating was used to improve the tolerance of the pentose-fermenting yeast Pichia stipitis towards hardwood spent sulphite liquor (HW SSL). Six UV-induced mutants of P. stipitis were used as the starting strains, and they were subjected to 4 rounds of genome shuffling. After each round, improved strains were selected based on their growth on HW SSL gradient plates. Mutant libraries were established after each round and these improved mutant strains served as the starting pool for the next round of shuffling. Apparent tolerance to HW SSL on the gradient plate increased progressively with each round of shuffling up to 4 rounds. Selected improved mutants were further tested for tolerance to liquid HW SSL. After 4 rounds of shuffling, 4 mutants, two from the third round (designated as GS301 and GS302) and two from the fourth round (designated as GS401 and GS402), were selected that could grow in 80% (v/v) HW SSL. GS301 and GS302 grew also in 85% (v/v) HW SSL. GS301 was viable in 90% (v/v) HW SSL, although no increase in cell number was seen. The P. stipitis wild type strain (WT) could not grow on HW SSL unless it was diluted to 65% (v/v) or lower. Genome-shuffled strains with improved tolerance to HW SSL retained their fermentation ability. Fermentation performance of GS301 and GS302, the 2 strains that exhibited the best tolerance to liquid HW SSL, was assessed in defined media and in HW SSL. Both strains utilized 4% (w/v) of xylose or glucose more efficiently and produced more ethanol than the WT. They also utilized 4% (w/v) of mannose or galactose and produced ethanol to the same extent as the WT. GS301 and GS302 were able to produce low levels of ethanol in undiluted HW SSL.
Keywords:Genome shuffling  Inhibitors  Lignocellulose  Mating  Spent sulphite liquor  Xylose
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号