首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thalamic circuitry and thalamocortical synchrony
Authors:Jones Edward G
Institution:Center for Neuroscience, University of California, Davis, Davis, CA 95616, USA. ejones@ucdavis.edu
Abstract:The corticothalamic system has an important role in synchronizing the activities of thalamic and cortical neurons. Numerically, its synapses dominate the inputs to relay cells and to the gamma-amino butyric acid (GABA)ergic cells of the reticular nucleus (RTN). The capacity of relay neurons to operate in different voltage-dependent functional modes determines that the inputs from the cortex have the capacity directly to excite the relay cells, or indirectly to inhibit them via the RTN, serving to synchronize high- or low-frequency oscillatory activity respectively in the thalamocorticothalamic network. Differences in the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subunit composition of receptors at synapses formed by branches of the same corticothalamic axon in the RTN and dorsal thalamus are an important element in the capacity of the cortex to synchronize low-frequency oscillations in the network. Interactions of focused corticothalamic axons arising from layer VI cortical cells and diffuse corticothalamic axons arising from layer V cortical cells, with the specifically projecting core relay cells and diffusely projecting matrix cells of the dorsal thalamus, form a substrate for synchronization of widespread populations of cortical and thalamic cells during high-frequency oscillations that underlie discrete conscious events.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号