Interaction of tubulin and cellular microtubules with the new antitumor drug MDL 27048. A powerful and reversible microtubule inhibitor |
| |
Authors: | V Peyrot D Leynadier M Sarrazin C Briand A Rodriquez J M Nieto J M Andreu |
| |
Affiliation: | Faculté de Pharmacie, Laboratoire de Physique Pharmaceutique, Marseille, France. |
| |
Abstract: | We have characterized the binding of trans-1-(2,5-dimethoxyphenyl)-3-[4-(dimethylamino)phenyl]-2-methyl-2- propen- 1-one (MDL 27048) to purified procine brain tubulin, and the inhibition of microtubule assembly by this compound in vitro and using cultured cells. Binding measurements were performed by difference absorption and fluorescence spectroscopy. MDL 27048 binds to one site/tubulin heterodimer with an apparent equilibrium constant Kb = (2.8 +/- 0.8) X 10(6) M-1 (50 mM 2-(N-morpholino)ethanesulfonic acid, 1 mM [ethylenebis(oxyethylenenitrilo)]tetraacetic acid, 0.5 mM MgCl2, 0.1 mM GTP buffer, pH 6.7, at 25 degrees C). Podophyllotoxin displaced the binding of MDL 27048, suggesting an overlap with the colchicine-binding site. Assembly of purified tubulin into microtubules was inhibited by substoichiometric concentrations of MDL 27048, which also induced a slow depolymerization of preassembled microtubules. The cytoplasmic microtubules of PtK2 cells were disrupted in a concentration and time-dependent manner by MDL 27048, as observed by indirect immunofluorescence microscopy. Maximal depolymerization took place with 2 X 10(-6) M MDL 27048 in 3 h. When the inhibitor was washed off from the cells, fast microtubule assembly (approximately 8 min) and complete reorganization of the cytoplasmic microtubule network (15-30 min) were observed. MDL 27048 also induced mitotic arrest in SV40-3T3 cell cultures. Due to all these properties, this anti-tumor drug constitutes a new and potent microtubule inhibitor, characterized by its specificity and reversibility. |
| |
Keywords: | |
|
|