首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inactivation of 1-aminocyclopropane-1-carboxylate (ACC) oxidase
Authors:Smith  Julian J; Zhang  Zhi Hong; Schofield  Christopher J; John  Philip; Baldwin  Jack E
Abstract:The enzyme 1-aminocyclopropane-1-carboxylate (ACC) oxidase,which catalyses the final step in the biosynthesis of ethylene,showed a non-linear time-course in vitro and activity decayedwith a half-life of around 14 min. This loss of activity wasstudied using tomato ACC oxidase purified from Escherichia coiltransformed with the cDNA clone pTOM13. Inactivation was notdue to end-product inhibition by dehydroascorbic acid or cyanide.Preincubatlon of enzyme in the combined presence of Fe2+ ascorbateand ACC, which together allowed catalytic turnover, resultedin almost total loss of ACC oxidase activity. Enzyme Inactivatedby catalysis could not be reactivated by passage through SephadexG-25 or by treating with combina tions of DTT and CO2 A non-lineartime-course and inactivation in the presence of all substratesand cofactors was also shown for the enzyme assayed in vivowith melon fruit discs. Using the purified tomato enzyme a distinctascorbate-dependent inactivation was also observed, which occurredIn the absence of catalysis and was prevented, although notreversed, by catalase. This ascorbate-dependent inactivationmay thus be due to H2O2 attack on ACC oxidase. Key words: 1-aminocyclopropane-1-carboxylate (ACC) oxidase, catalase, catalytic inactivation, ethylene
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号