Abstract: | Thermal tolerance is a transient state of heat resistance occurring in cells and tissues after exposure to sublethal heat or certain chemicals. Although the mechanism of such resistance is unknown, it has been recently shown that preceding its development, cellular glutathione (GSH) levels rise. We have used a glutathione synthetase-deficient [GSH(-)] human fibroblast line to study the relationship between glutathione content and thermal tolerance. The GSH(-) cells had approximately 6% as much GSH as normal fibroblasts. Normal and GSH(-) fibroblasts showed similar survival after exposure to 45 degrees C. Exposure of normal fibroblasts to heat (45 degrees C for 15 min) led to a prompt rise in cellular GSH content as well as development of transient thermal tolerance. Similar treatment of GSH(-) fibroblasts produced no change in the very low GSH levels but was associated with a degree of thermal tolerance similar to that of normal cells. Thermal tolerance decayed more rapidly in GSH(-) cells than in normal fibroblasts. We conclude that the development of thermal tolerance in human fibroblasts is independent of GSH content. |