Frameshift autoregulation in the gene for Escherichia coli release factor 2: partly functional mutants result in frameshift enhancement. |
| |
Authors: | B C Donly C D Edgar F M Adamski W P Tate |
| |
Affiliation: | Department of Biochemistry, University of Otago, Dunedin, New Zealand. |
| |
Abstract: | The regulation of release factor 2 (RF-2) synthesis in Escherichia coli occurs, at least in part, through autoregulatory feedback exerted at a unique frameshifting step required during RF-2 translation. We have constructed fusions between the genes for RF-2 and E. coli trpE which make direct measurement of frameshifting efficiency possible since both products of regulation, the termination product and the frameshift product, are stable. The addition of purified RF-2 to in vitro expressions of these fusion genes was found to result in decreased frameshifting and increased termination at the regulation site. The frame-shifted trpE-RF-2 products synthesized from these fusions are unique with respect to their functional release factor activities; when tested in assays of two intermediate steps of translational termination, they were found to be partially active for the function of ribosome binding, but inactive for peptidyl-tRNA hydrolysis (release). These are the first examples of release factor mutants selectively active for only one of these function. In vivo these chimeric proteins promote large increases in frameshifting at the RF-2 frameshift region, thereby reversing normal negative autoregulatory feedback and instead supporting fully efficient frameshifting in their own synthesis. This activity provides new evidence for the importance of ribosomal pausing in directing efficient frameshifting at the RF-2 frameshift region. |
| |
Keywords: | |
|
|