首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Existence of high- and low-affinity vanadate-binding sites on Ca(2+)-ATPase of the sarcoplasmic reticulum.
Authors:K Yamasaki  T Yamamoto
Institution:Department of Biology, Faculty of Science, Osaka University.
Abstract:The binding of vanadate to isolated sarcoplasmic reticulum (SR) membranes was measured colorimetrically by equilibrium sedimentation and ion exchange column filtration. The concentration dependence of vanadate binding exhibited a biphasic curve with two phases of equal amplitude. A similar biphasic curve of the vanadate dependence was observed with the purified Ca(2+)-ATPase prepared by deoxycholate extraction. Sites of vanadate binding could be classified into two distinct species based on apparent affinity; the high-affinity binding sites have a dissociation constant below 0.1 microM, and the low-affinity sites one of 36 microM. The maximum amount of vanadate bound to each of the high- or low-affinity sites was estimated to be 2.6-3.6 nmol/mg SR protein, which corresponds to approximately 0.5 mol of vanadate bound per mol of Ca(2+)-ATPase. These results indicate that 1 mol of Ca(2+)-ATPase contains 0.5 mol of high-affinity vanadate-binding sites as well as 0.5 mol of low-affinity vanadate-binding sites. Vanadate binding to the low-affinity sites was competitively inhibited by inorganic phosphate, while vanadate binding to the high-affinity sites resulted in a non-competitive inhibition of the phosphoenzyme formation from inorganic phosphate. When SR membrane were solubilized with polyoxy-ethylene-9-laurylether (C12E9), the vanadate binding exhibited a monophasic concentration dependency curve with a dissociation constant of 13 microM. The number of vanadate-binding sites was estimated to be 7.2 nmol/mg SR protein which represents about 1 mol of site per mol of Ca(2+)-ATPase. Vanadate binding to the solubilized Ca(2+)-ATPase was competitively inhibited by inorganic phosphate.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号