首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Soft tissue displacement over pelvic anatomical landmarks during 3-D hip movements
Institution:1. Department of Movement, Human and Health Sciences, Università degli Studi di Roma ‘‘Foro Italico’’, Rome, Italy;2. Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Università degli Studi di Roma “Foro Italico”, Rome, Italy;3. Life and Health Sciences, Aston University, Birmingham, United Kingdom;1. Monash University, 900 Dandenong Road, Caulfield East, Victoria 3145, Australia;2. School of Engineering and IT, University of New South Wales, Canberra, Australia;3. Trauma and Orthropaedic Research Unit, Canberra Hospital, Canberra, Australia;1. Instituto de Biomecánica de Valencia, Universitat Politècnica de València, Valencia, Spain;2. CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain;3. Centro de Investigación en Ingeniería Mecánica, Universitat Politècnica de València, Valencia, Spain;1. CIC INSERM 1432, Plateforme d''Investigation Technologique, CHU Dijon, France;2. Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France;3. CNRFR – Rehazenter, Laboratoire d’Analyse du Mouvement et de la Posture, 1 rue André Vésale, L-2674 Luxembourg, Luxembourg;4. Laboratoire de simulation et de modélisation du mouvement, Département de kinésiologie, Université de Montréal, 1700, rue Jacques Tétreault, Laval, QC H7N 0B6, Canada;5. Research Center, Sainte-Justine Hospital, 3175 Côte-Ste-Catherine, Montreal, Quebec H3T 1C5, Canada;1. The Royal Children׳s Hospital, Melbourne, Australia;2. The Murdoch Childrens Research Institute, Australia;3. The University of Melbourne, School of Engineering, Australia;4. Laboratoire de recherche en Imagerie et Orthopédie (LIO), ETS, Montreal, Canada;5. Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;1. Department of Movement, Human and Health Sciences, Università degli Studi di Roma ‘‘Foro Italico’’, Rome, Italy;2. Université de Lyon, F-69622 Lyon, France;3. Université Claude Bernard Lyon 1, Villeurbanne, France;4. IFSTTAR, UMR_T9406, Laboratoire de Biomécanique et Mécanique des Chocs (LBMC), F-69675 Bron, France;5. Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Università degli Studi di Roma “Foro Italico”, Rome, Italy;1. Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK;2. Oxford Orthopaedic Engineering Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
Abstract:The position, in a pelvis-embedded anatomical coordinate system, of skin points located over the following anatomical landmarks (AL) was determined while the hip assumed different spatial postures: right and left anterior superior and posterior superior iliac spines, and the sacrum. Postures were selected as occurring during walking and during a flexion–extension and circumduction movement, as used to determine the hip joint centre position (star-arc movement). Five volunteers, characterised by a wide range of body mass indices (22–37), were investigated. Subject-specific MRI pelvis digital bone models were obtained. For each posture, the pose of the pelvis-embedded anatomical coordinate system was determined by registering this bone model with points digitised over bony prominences of the pelvis, using a wand carrying a marker-cluster and stereophotogrammetry. The knowledge of how the position of the skin points varies as a function of the hip posture provided information regarding the soft tissue artefact (STA) that would affect skin markers located over those points during stereophotogrammetric movement analysis. The STA was described in terms of amplitude (relative to the position of the AL during an orthostatic posture), diameter (distance between the positions of the AL which were farthest away from each other), and pelvis orientation. The STA amplitude, exhibited, over all postures, a median inter-quartile] value of 96] and 1611] mm, for normal and overweight volunteers, respectively. STA diameters were larger for the star-arc than for the walking postures, and the direction was predominantly upwards. Consequent errors in pelvic orientation were in the range 1–9 and 4–11 degrees, for the two groups respectively.
Keywords:Soft tissue artefact  Human movement analysis  Stereophotogrammetry  Pelvis  Multiple anatomical calibration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号