首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Assessment of the lower limb soft tissue artefact at marker-cluster level with a high-density marker set during walking
Institution:1. Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;2. Laboratoire de recherche en imagerie et orthopédie, Centre de recherche du Centre Universitaire Hospitalier de Montréal, École de technologie supérieure, Montréal, Canada;3. Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France;4. Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Università degli Studi di Roma “Foro Italico”, Rome, Italy;1. Instituto de Biomecánica de Valencia, Universitat Politècnica de València, Valencia, Spain;2. CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain;3. Centro de Investigación en Ingeniería Mecánica, Universitat Politècnica de València, Valencia, Spain;1. Institute of Biomedical Engineering, National Taiwan University, Taiwan, ROC;2. Department of Electrical Engineering, Fu Jen Catholic University, Taiwan, ROC;3. Department of Orthopaedic Surgery, School of Medicine, National Taiwan University, Taiwan, ROC;4. Department of Physical Therapy, China Medical University, Taiwan, ROC;5. Department of Orthopaedic Surgery, China Medical University Hospital, Taiwan, ROC;1. Department of Movement, Human and Health Sciences, Università degli Studi di Roma ‘‘Foro Italico’’, Rome, Italy;2. Université de Lyon, F-69622 Lyon, France;3. Université Claude Bernard Lyon 1, Villeurbanne, France;4. IFSTTAR, UMR_T9406, Laboratoire de Biomécanique et Mécanique des Chocs (LBMC), F-69675 Bron, France;5. Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Università degli Studi di Roma “Foro Italico”, Rome, Italy;1. CIC INSERM 1432, Plateforme d''Investigation Technologique, CHU Dijon, France;2. Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France;3. CNRFR – Rehazenter, Laboratoire d’Analyse du Mouvement et de la Posture, 1 rue André Vésale, L-2674 Luxembourg, Luxembourg;4. Laboratoire de simulation et de modélisation du mouvement, Département de kinésiologie, Université de Montréal, 1700, rue Jacques Tétreault, Laval, QC H7N 0B6, Canada;5. Research Center, Sainte-Justine Hospital, 3175 Côte-Ste-Catherine, Montreal, Quebec H3T 1C5, Canada;1. Université de Lyon, F-69622, Lyon; IFSTTAR, LBMC, UMR_T9406, Bron; Université Lyon 1, Villeurbanne, France;2. Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Rome, Italy;1. Institute of Biomedical Engineering, National Taiwan University, Taiwan, ROC;2. Department of Orthopaedic Surgery, School of Medicine, National Taiwan University, Taiwan, ROC;3. Department of Electrical Engineering, Fu Jen Catholic University, Taiwan, ROC;4. Department of Physical Therapy, China Medical University, Taiwan, ROC;5. Department of Orthopaedics, China Medical University, Taiwan, ROC;6. Department of Orthopaedic Surgery, School of Medicine, China Medical University, Taiwan, ROC;7. Department of Radiology, China Medical University Hospital, Taichung, Taiwan, ROC;8. Department of Biomedical Imaging and Radiological Science, College of Health Care, China Medical University, Taichung, Taiwan, ROC
Abstract:The estimation of joint kinematics from skin markers is hindered by the soft tissue artefact (STA), a well-known phenomenon although not fully characterized. While most assessments of the STA have been performed based on the individual skin markers displacements, recent assessments were based on the marker-cluster geometrical transformations using, e.g., principal component or modal analysis. However, these marker-clusters were generally made of 4–6 markers and the current findings on the STA could have been biased by the limited number of skin makers analysed. The objective of the present study was therefore to confirm them with a high-density marker set, i.e. 40 markers placed on the segments.A larger number of modes than found in the literature was required to describe the STA. Nevertheless, translations and rotations of the marker-cluster remained the main STA modes, archetypally the translation along the proximal-distal and anterior-posterior axes for the shank and the translation along the proximal-distal axis and the rotation about the medial-lateral axis for the thigh. High correlations were also found between the knee flexion angle and the amplitude of these modes for the thigh whereas moderate ones were found for the shank.These findings support the current re-orientation of the STA compensation methods, from bone pose estimators which typically address the non-rigid components of the marker-cluster to kinematic-driven rigid-component STA models.
Keywords:Soft tissue artefact  Rigid and non-rigid components  Translation and rotation modes  Knee joint angles  Treadmill walking  Total knee prosthesis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号