首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ganglioside-modulated protein phosphorylation in myelin
Authors:K F Chan
Abstract:Gangliosides have profound effects on the phosphorylation of several proteins in myelin. Addition of polysialogangliosides to purified guinea pig brain myelin enhanced the endogenous phosphorylation of a 62-kDa phosphoprotein, but completely inhibited the phosphorylation of myelin basic protein (MBP) (18.5 kDa). The ganglioside-stimulated phosphorylation of the 62-kDa protein was dose-dependent and -specific. Asialo-GM1, ceramide trihexosides, N-acetylneuraminic acid, or colominic acid alone could not mimic this effect, suggesting that the activation process requires both the hydrophobic head group and the anionic character of the gangliosides. Studies on the time course of this reaction revealed that it was a rapid and reversible process and was affected only very slightly by Ca2+. Thus, the stimulatory effect of gangliosides may not involve Ca2+-gangliosides complexes or proteolysis, but may be mediated through an activation of a ganglioside-dependent protein kinase or due to substrate protein-glycolipid interaction. Modulation of the phosphorylation of MBP by gangliosides varies with the states of phosphorylation of this protein. Prior addition of ganglioside to myelin inhibited the phosphorylation of MBP. However, addition of gangliosides to myelin subsequent to maximal phosphorylation of MBP retarded the dephosphorylation of this protein. Phosphorylation of isolated MBP by protein kinase C was stimulated by gangliosides, provided phosphatidylserine was present. In contrast, the glycolipid inhibited the phosphorylation of a unique site catalyzed by cAMP-dependent protein kinase. This site was distinct from those phosphorylated by protein kinase C and was also sensitive to chymotryptic cleavage. Although the exact physiological significance of protein phosphorylation in myelin has yet to be established, gangliosides may play an important role in the modulation of this reversible post-translational modification mechanism.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号