首页 | 本学科首页   官方微博 | 高级检索  
     


Scattered trees and livestock grazing as keystones organisms for sustainable use and conservation of Mediterranean dehesas
Affiliation:1. Researcher, INTA–Estación Experimental Agropecuaria San Luis, 5730 Villa Mercedes, San Luis, Argentina.;2. Researchers, Centro de Investigación y Tecnología Agroalimentaria del Gobierno de Aragón, 50059 Zaragoza, Spain.;1. Biogeography and Geomatics, Department of Physical Geography, Stockholm University, 10691 Stockholm, Sweden
Abstract:Mediterranean scattered oak woodlands support relatively high biological diversity, and provide important ecosystem services. However, there is still a lack of knowledge about livestock-tree-grassland relationships, knowledge necessary for effective conservation management in these systems. To address such lacuna, we measured the effects of scattered trees and grazing animals (livestock vs. wild ungulates, mostly deer) on biomass and diversity (and their relationship) of the herbaceous layer (understory) of open holm oak woodland (known as dehesa) in Central Spain, for two years. We located two 1-ha plots within three different grazing management schemes (cattle, sheep and wildlife only). Within each plot, we randomly selected four focal trees from which a subplot was established in two directions and three distances. In each subplot, we measured plant diversity and biomass, along with microclimatic variables across sites. We found rainfall variability affected herbaceous biomass and diversity in the dehesa system, and the effects were nuanced: in a dry year (<300 mm annual rainfall) the presence of livestock grazing correlated with higher herbaceous biomass (14%), and in moister year (>600 mm annual rainfall) the effect was enhanced, as plots under livestock grazing exhibited even higher herbaceous biomass (42%). In addition, livestock, particularly cattle, generated a more diverse community (52 species m−2). Microsites created by trees generated high plant diversity among herbaceous communities, where alpha diversity was higher (20%) in ecotone and inter-tree gaps than under the canopies. In addition, species turnover was higher than 50% in all cases. Biomass was higher (15%) under the canopies only under humid conditions. Legume dry matter was positively related to plant diversity. We concluded that agroforestry management practices such as promoting tree development through silvicultural techniques to create different microsites, and maintaining livestock grazing are needed to preserve these emblematic ecosystems.
Keywords:Ecotone  Grazing species  Inter-tree gaps  Livestock-tree-grassland interaction  Biomass  Plant diversity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号