首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Human apolipoprotein E isoprotein subclasses are genetically determined.
Authors:V I Zannis  P W Just  J L Breslow
Abstract:In a recent communication, we showed that human very low density lipoprotein (VLDL) apolipoprotein E (Apo E) from different individuals appears upon two-dimensional gel electrophoretic analysis in either one of two complex patterns. These have been designated class alpha and class beta. Mixing of VLDL from different subjects revealed that not all alpha or beta apo E patterns were the same. In this manner, we identified three subclasses of class alpha (alpha II, alpha III, and alpha IV) and three subclasses of class beta (beta II, beta III, and beta IV). We report here the results of family studies that reveal that the subclasses (alpha II, alph III, and alpha IV and beta II, beta III, and beta IV) of apo E are determined at a single genetic locus with three common alleles, epsilon II, epsilon III, and epsilon IV. The class beta phenotypes (beta II, beta III, and beta IV) represent homozygosity for two identical apo E alleles (epsilon). In contrast, class alpha phenotypes (alpha II, alpha III, and alpha IV) represent heterozygosity for two different apo E alleles. The apo E subclasses and their corresponding genotypes are as follows: beta II = epsilon II/epsilon II; beta III = epsilon III; beta IV = epsilon IV/epsilon IV; alpha II = epsilon II/epsilon III; alpha III = epsilon III/epsilon IV; and alpha IV = epsilon II/epsilon IV. To estimate the frequencies of the apo E alleles in the general population, apo E subclasses were then investigated in 61 unrelated volunteers and the results were: beta II = 1 (2%), beta III = 30 (49%), alpha II = 9 (15%, alpha III = 13 (31%), and alpha IV = 2 (3%). Utilizing the frequencies of these phenotypes, the gene frequencies were calculated to be epsilon II = 11%, epsilon III = 72%, and epsilon IV = 17%. In addition, apo E subclasses were studied in a clinic for individuals with plasma lipid disorders and the apo E subclass beta IV was found to be associated with type III hyperlipoproteinemia. There was no association of any apo E subclass with type II, type IV, or type VI hyperlipoproteinemia or plasma HDL cholesterol levels. This study explains the genetic basis for the common variation in a human plasma protein, apo E. Since the apo E subclass beta IV is associated with type III hyperlipoproteinemia, a disease characterized by xanthomatosis and premature atherosclerosis, understanding the genetic basis of the apo E subclasses should provide insight into the genetics of type III hyperlipoproteinemia.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号