首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mismatch formation in solution and on DNA microarrays: how modified nucleosides can overcome shortcomings of imperfect hybridization caused by oligonucleotide composition and base pairing
Authors:Seela Frank  Budow Simone
Institution:Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Frank.Seela@uni-osnabrueck.de
Abstract:The DNA microarray technology is a well-established and widely used technology although it has several drawbacks. The accurate molecular recognition of the canonical nucleobases of probe and target is the basis for reliable results obtained from microarray hybridization experiments. However, the great flexibility of base pairs within the DNA molecule allows the formation of various secondary structures incorporating Watson-Crick base pairs as well as non-canonical base pair motifs, thus becoming a source of inaccuracy and inconsistence. The first part of this report provides an overview of unusual base pair motifs formed during molecular DNA interaction in solution highlighting selected secondary structures employing non-Watson-Crick base pairs. The same mispairing phenomena obtained in solution are expected to occur for immobilized probe molecules as well as for target oligonucleotides employed in microarray hybridization experiments the effect of base pairing and oligonucleotide composition on hybridization is considered. The incorporation of nucleoside derivatives as close shape mimics of the four canonical nucleosides into the probe and target oligonucleotides is discussed as a chemical tool to resolve unwanted mispairing. The second part focuses non-Watson-Crick base pairing during hybridization performed on microarrays. This is exemplified for the unusual stable dG.dA base pair.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号