首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanical properties of the human red blood cell membrane at −15 °C
Authors:Fritz Thom  
Institution:aInstitute for Transfusion Medicine, Charité –Universitätsmedizin Berlin, 10115 Berlin, Germany
Abstract:The most common method for measuring the mechanical behavior of the human red blood cell (RBC) membrane is micropipette aspiration, because it can be used to apply both a low uniaxial stress at a small part of the membrane or high two-axial stresses to the whole membrane E.A. Evans, R.E. Waugh, Mechano-chemical study of red cell membrane structure in situ, in: Kroc Foundation Series, vol. 13, Erythrocyte Mechanics and Blood Flow, Alan R. Liss. Inc., New York, 1980, pp. 31–56 (Chapter 3); H.J. Meiselman, Measures of blood rheology and erythrocyte mechanics, in: Kroc Foundation Series, vol. 13, Erythrocyte Mechanics and Blood Flow, Alan R. Liss. Inc., New York, 1980, pp. 75–117 (Chapter 5)]. The elastic shear moduli and area changes of the human RBC published to date were calculated by means of this technique. However, a main drawback of the method is its impracticability at subzero temperatures. Experiments at below 0 °C are of interest because it is at these temperatures that RBC lysis occurs during freezing and thawing after cryopreservation, via a mechanism that may be mechanical.A method for circumventing this limitation is deforming the cell membranes by applying an electric ac field to a supercooled suspension. In a previous study, we applied this technique to human RBCs down to −15 °C M. Krueger, F. Thom, Deformability and stability of erythrocytes in high-frequency electric fields down to subzero temperatures, Biophys. J. 73 (1997) 2653–2666]. In this technique, the electrical dimensions must be translated into those of mechanics. We provided a formula for these calculations, which demonstrated excellent concordance with known mechanical measurements at room temperature F. Thom, H. Gollek, Calculation of mechanical properties of human red cells based on electrically induced deformation experiments, J. Electrostat. 64 (2006) 53–61]. Using this formula, we have now calculated the shear moduli and stress–strain diagram for our deformation experiments at −15 °C and present the results below.
Keywords:Human red blood cell membrane  Subzero temperature  Shear modulus  Isotropic tension  AC electrical field
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号