首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A novel insight into the heme and NO/CO binding mechanism of the alpha subunit of human soluble guanylate cyclase
Authors:Fangfang Zhong  Jie Pan  Xiaoxiao Liu  Hongyan Wang  Tianlei Ying  Jihu Su  Zhong-Xian Huang  Xiangshi Tan
Institution:(1) Department of Chemistry, Fudan University, Shanghai, 200433, China;(2) Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China;(3) Department of Modern Physics, University of Science and Technology of China, Hefei, 230026, China;
Abstract:Human soluble guanylate cyclase (sGC), a critical heme-containing enzyme in the NO-signaling pathway of eukaryotes, is an αβ heterodimeric hemoprotein. Upon the binding of NO to the heme, sGC catalyzes the conversion of GTP to cyclic GMP, playing a crucial role in many physiological processes. However, the specific contribution of the α and β subunits of sGC in the intact heme binding remained intangible. The recombinant human sGC α1 subunit has been expressed in Escherichia coli and characterized for the first time. The heme binding and related NO/CO binding properties of both the α1 subunit and the β1 subunit were investigated via heme reconstitution, UV–vis spectroscopy, EPR spectroscopy, stopped-flow kinetics, and homology modeling. These results indicated that the α1 subunit of human sGC, lacking the conserved axial ligand, is likely to interact with heme noncovalently. On the basis of the equilibrium and kinetics of CO binding to sGC, one possible CO binding model was proposed. CO binds to human sGCβ195 by simple one-step binding, whereas CO binds to human sGCα259, possibly from both axial positions through a more complex process. The kinetics of NO dissociation from human sGC indicated that the NO dissociation from sGC was complex, with at least two release phases, and human sGCα259 has a smaller k 1 but a larger k 2. Additionally, the role of the cavity of the α1 subunit of human sGC was explored, and the results indicate that the cavity likely accommodates heme. These results are beneficial for understanding the overall structure of the heme binding site of the human sGC and the NO/CO signaling mechanism.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号