首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Understanding the changes in the circular dichroism of light harvesting complex II upon varying its pigment composition and organization
Authors:Georgakopoulou Sofia  van der Zwan Gert  Bassi Roberto  van Grondelle Rienk  van Amerongen Herbert  Croce Roberta
Institution:Consiglio Nazionale delle Ricerche, Istituto di Biofisica, c/o ITC, Via Sommarive 18 38050 Povo (Trento), Italy.
Abstract:In this work we modeled the circular dichroism (CD) spectrum of LHCII, the main light harvesting antenna of photosystem II of higher plants. Excitonic calculations are performed for a monomeric subunit, taken from the crystal structure of trimeric LHCII from spinach Liu, Z. F., Yan, H. C., Wang, K. B., Kuang, T. Y., Zhang, J. P., Gui, L. L., An, X. M., and Chang, W. R. (2004) Nature 428, 287-292]. All of the major features of the CD spectrum above 450 nm are satisfactorily reproduced, and possible orientations of the Chl and carotenoid transition dipole moments are identified. The obtained modeling parameters are used to simulate the CD spectra of two complexes with altered pigment composition: a mutant lacking Chls a 611-612 and a complex lacking the carotenoid neoxanthin. By removing the relevant pigment(s) from the structure, we are able to reproduce their spectra, which implies that the alteration does not disturb the overall structure. The CD spectrum of trimeric LHCII shows a reversed relative intensity of the two negative bands around 470 and 490 nm as compared to monomeric LHCII. The simulations reproduce this reversal, indicating that it is mainly due to interactions between chromophores in different monomeric subunits, and the trimerization does not induce observable changes in the monomeric structure. Our simulated spectrum resembles one of two different trimeric CD spectra reported in literature. We argue that the differences in the experimental trimeric CD spectra are caused by changes in the strength of the monomer-monomer interactions due to the differences in detergents used for the purification of the complexes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号