首页 | 本学科首页   官方微博 | 高级检索  
     


CD28 engagement promotes actin polymerization through the activation of the small Rho GTPase Cdc42 in human T cells
Authors:Salazar-Fontana Laura Inés  Barr Valarie  Samelson Lawrence E  Bierer Barbara E
Affiliation:Laboratory of Lymphocyte Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. lfontana@niaid.nih.gov
Abstract:Engagement of the costimulatory molecule CD28 is an important step in the optimal activation of T cells. Nevertheless, the specific role of CD28 in the formation of the immunological synapse and cytoskeletal changes that occur upon TCR/CD3 complex engagement is still poorly understood. Using Ab-coated surfaces, we show that CD28 engagement in the absence of any other signal induced the formation of cytoplasmic elongations enriched in filamentous actin (F-actin), in this work called filopodia or microspikes. Such structures were specific for engagement of CD28 on mAb-coated surfaces because they could not be observed in surfaces coated with either poly(L-lysine) or anti-CD3 mAb. The signaling pathway coupling CD28 to cytoskeletal rearrangements required Src-related kinase activity and promoted Vav phosphorylation and Cdc42 activation independently of the zeta-chain-associated kinase (ZAP-70). CD28-induced filopodia required Cdc42 GTPase activity, but not the related Rho GTPase Rac1. Moreover, Cdc42 colocalized to areas of increased F-actin. Our results support a specific role for the activation of the small Rho GTPase Cdc42 in the actin reorganization mediated by CD28 in human T cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号