首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evidence for progressive phosphorus limitation over long-term ecosystem development: Examination of a biogeochemical paradigm
Authors:Jorge E Izquierdo  Benjamin Z Houlton  Tiff L van Huysen
Institution:1. Department of Environmental Sciences, University of Virginia, 291 McCormick Road, Charlottesville, VA, 22904, USA
Abstract:

Aims

To test predictions of ecosystem theory for changes in P cycling over primary succession, we determined soil phosphorus (P) in labile, primary mineral, organic, and occluded forms along a chronosequence of five wave cut terraces known as the “Ecological Staircase”. The Ecological Staircase terraces (T1-T5) transition naturally from fertile native coastal forests in California, USA, to diminutive pygmy vegetation over the span of?>?500,000 years of pedogenesis.

Methods

Soil P fractions were quantified to a depth of 40 cm on T1-T5 using a modified Hedley P fractionation procedure.

Results

Overall results confirmed the Walker and Syers Model of Phosphorus Transformations During Pedogenesis: total P declined from youngest (194 mg/kg P) to oldest (127 mg/kg P) sites; primary-mineral P decreased sharply from T1 to older sites; and occluded P dominated P pools at the oldest pygmy sites (T3-T5). In addition, foliar P concentrations declined markedly in the pygmy forest, and N/P of vegetation (T1: 6.03, T5: 14.4) and N/Porganic of mineral soils (T1: 6.10, T5: 25.3) increased significantly over time.

Conclusions

Results point to P as the primary limiting nutrient in the pygmy forest, exemplifying the terminal steady-state of ecosystem retrogression that underlies the persistence of this unique ecosystem.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号