首页 | 本学科首页   官方微博 | 高级检索  
     


Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice
Authors:Ryan S. Lim  Adelheid Kratzer  Nicholas P. Barry  Shinobu Miyazaki-Anzai  Makoto Miyazaki  William W. Mantulin  Moshe Levi  Eric O. Potma  Bruce J. Tromberg
Affiliation:1. Laser Microbeam and Medical Program (LAMMP), Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA;2. Department of Physiology and Biophysics, University of California, Irvine, CA;7. Department of Chemistry, University of California, Irvine, CA;11. Department of Biomedical Engineering, University of California, Irvine, CA;4. Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO
Abstract:We characterized several cellular and structural features of early stage Type II/III atherosclerotic plaques in an established model of atherosclerosis—the ApoE-deficient mouse—by using a multimodal, coregistered imaging system that integrates three nonlinear optical microscopy (NLOM) contrast mechanisms: coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and two-photon excitation fluorescence (TPEF). Specifically, the infiltration of lipid-rich macrophages and the structural organization of collagen and elastin fibers were visualized by CARS, SHG, and TPEF, respectively, in thick tissue specimens without the use of exogenous labels or dyes. Label-free CARS imaging of macrophage accumulation was confirmed by histopathology using CD68 staining. A high-fat, high-cholesterol Western diet resulted in an approximate 2-fold increase in intimal plaque area, defined by CARS signals of lipid-rich macrophages. Additionally, analysis of collagen distribution within lipid-rich plaque regions revealed nearly a 4-fold decrease in the Western diet–fed mice, suggesting NLOM sensitivity to increased matrix metalloproteinase (MMP) activity and decreased smooth muscle cell (SMC) accumulation. These imaging results provide significant insight into the structure and composition of early stage Type II/III plaque during formation and allow for quantitative measurements of the impact of diet and other factors on critical plaque and arterial wall features.
Keywords:atherosclerosis   extracellular matrix   collagen   elastin   arteries   nonlinear optical microscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号