首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Triazole pyrimidine nucleosides as inhibitors of Ribonuclease A. Synthesis,biochemical, and structural evaluation
Authors:Vanessa Parmenopoulou  Demetra SM Chatzileontiadou  Stella Manta  Stamatina Bougiatioti  Panagiotis Maragozidis  Dimitra-Niki Gkaragkouni  Eleni Kaffesaki  Anastassia L Kantsadi  Vassiliki T Skamnaki  Spyridon E Zographos  Panagiotis Zounpoulakis  Nikolaos AA Balatsos  Dimitris Komiotis  Demetres D Leonidas
Institution:1. Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos St., 41221 Larissa, Greece;2. Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
Abstract:Five ribofuranosyl pyrimidine nucleosides and their corresponding 1,2,3-triazole derivatives have been synthesized and characterized. Their inhibitory action to Ribonuclease A has been studied by biochemical analysis and X-ray crystallography. These compounds are potent competitive inhibitors of RNase A with low μM inhibition constant (Ki) values with the ones having a triazolo linker being more potent than the ones without. The most potent of these is 1-(β-d-ribofuranosyl)-1,2,3-triazol-4-yl]uracil being with Ki = 1.6 μM. The high resolution X-ray crystal structures of the RNase A in complex with three most potent inhibitors of these inhibitors have shown that they bind at the enzyme catalytic cleft with the pyrimidine nucleobase at the B1 subsite while the triazole moiety binds at the main subsite P1, where P-O5′ bond cleavage occurs, and the ribose at the interface between subsites P1 and P0 exploiting interactions with residues from both subsites. The effect of a susbsituent group at the 5-pyrimidine position at the inhibitory potency has been also examined and results show that any addition at this position leads to a less efficient inhibitor. Comparative structural analysis of these RNase A complexes with other similar RNase A—ligand complexes reveals that the triazole moiety interactions with the protein form the structural basis of their increased potency. The insertion of a triazole linker between the pyrimidine base and the ribose forms the starting point for further improvement of these inhibitors in the quest for potent ribonucleolytic inhibitors with pharmaceutical potential.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号