首页 | 本学科首页   官方微博 | 高级检索  
     


Oxidative Activity of Yeast Ero1p on Protein Disulfide Isomerase and Related Oxidoreductases of the Endoplasmic Reticulum
Authors:Elvira Vitu  Sunghwan Kim  Carolyn S. Sevier  Omer Lutzky  Nimrod Heldman  Moran Bentzur  Tamar Unger  Meital Yona  Chris A. Kaiser  Deborah Fass
Affiliation:From the Department of Structural Biology and ;the Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot 76100, Israel and ;the §Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Abstract:The sulfhydryl oxidase Ero1 oxidizes protein disulfide isomerase (PDI), which in turn catalyzes disulfide formation in proteins folding in the endoplasmic reticulum (ER). The extent to which other members of the PDI family are oxidized by Ero1 and thus contribute to net disulfide formation in the ER has been an open question. The yeast ER contains four PDI family proteins with at least one potential redox-active cysteine pair. We monitored the direct oxidation of each redox-active site in these proteins by yeast Ero1p in vitro. In this study, we found that the Pdi1p amino-terminal domain was oxidized most rapidly compared with the other oxidoreductase active sites tested, including the Pdi1p carboxyl-terminal domain. This observation is consistent with experiments conducted in yeast cells. In particular, the amino-terminal domain of Pdi1p preferentially formed mixed disulfides with Ero1p in vivo, and we observed synthetic lethality between a temperature-sensitive Ero1p variant and mutant Pdi1p lacking the amino-terminal active-site disulfide. Thus, the amino-terminal domain of yeast Pdi1p is on a preferred pathway for oxidizing the ER thiol pool. Overall, our results provide a rank order for the tendency of yeast ER oxidoreductases to acquire disulfides from Ero1p.
Keywords:Electron Transfer   Enzymes/Flavin   Enzymes/Oxidase   Glutathione   Organisms/Yeast   Subcellular Organelles/Endoplasmic Reticulum   Sulfhydryls/Disulfide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号