首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Vertebrate kinetochore protein architecture: protein copy number
Authors:Katherine Johnston  Ajit Joglekar  Tetsuya Hori  Aussie Suzuki  Tatsuo Fukagawa  ED Salmon
Institution:1.Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;2.Department of Molecular Genetics/National Institute of Genetics, The Graduate University for Advanced Studies, Shizuoka 411-8540, Japan
Abstract:To define the molecular architecture of the kinetochore in vertebrate cells, we measured the copy number of eight kinetochore proteins that link kinetochore microtubules (MTs kMTs]) to centromeric DNA. We used a fluorescence ratio method and chicken DT40 cell lines in which endogenous loci encoding the analyzed proteins were deleted and complemented using integrated green fluorescent protein fusion transgenes. For a mean of 4.3 kMTs at metaphase, the protein copy number per kMT is between seven and nine for members of the MT-binding KNL-1/Mis12 complex/Ndc80 complex network. It was between six and nine for four members of the constitutive centromere-associated network: centromere protein C (CENP-C), CENP-H, CENP-I, and CENP-T. The similarity in copy number per kMT for all of these proteins suggests that each MT end is linked to DNA by six to nine fibrous unit attachment modules in vertebrate cells, a conclusion that indicates architectural conservation between multiple MT-binding vertebrate and single MT-binding budding yeast kinetochores.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号