首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Diffusion NMR study of complex formation in membrane-associated peptides
Authors:Suliman Barhoum  Valerie Booth  Anand Yethiraj
Institution:1. Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL, Canada
2. Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
Abstract:Pulsed-field-gradient nuclear magnetic resonance (PFG-NMR) is used to obtain the true hydrodynamic size of complexes of peptides with sodium dodecyl sulfate SDS micelles. The peptide used in this study is a 19-residue antimicrobial peptide, GAD-2. Two smaller dipeptides, alanine–glycine (Ala–Gly) and tyrosine–leucine (Tyr–Leu), are used for comparison. We use PFG-NMR to simultaneously measure diffusion coefficients of both peptide and surfactant. These two inputs, as a function of SDS concentration, are then fit to a simple two species model that neglects hydrodynamic interactions between complexes. From this we obtain the fraction of free SDS, and the hydrodynamic size of complexes in a GAD-2–SDS system as a function of SDS concentration. These results are compared to those for smaller dipeptides and for peptide-free solutions. At low SDS concentrations (SDS] ≤ 25 mM), the results self-consistently point to a GAD-2–SDS complex of fixed hydrodynamic size R = (5.5 ± 0.3) nm. At intermediate SDS concentrations (25 mM < SDS] < 60 mM), the apparent size of a GAD-2–SDS complex shows almost a factor of two increase without a significant change in surfactant-to-peptide ratio within a complex, most likely implying an increase in the number of peptides in a complex. For peptide-free solutions, the self-diffusion coefficients of SDS with and without buffer are significantly different at low SDS concentrations but merge above SDS] = 60 mM. We find that in order to obtain unambiguous information about the hydrodynamic size of a peptide-surfactant complex from diffusion measurements, experiments must be carried out at or below SDS] = 25 mM.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号