首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Detection of viable Yersinia pestis by fluorescence in situ hybridization using peptide nucleic acid probes
Authors:Kenny John H  Zhou Yan  Schriefer Martin E  Bearden Scott W
Institution:Bacterial Diseases Branch, Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vector-Borne and Enteric Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, United States.
Abstract:A successful method has been developed for the detection of live Yersinia pestis, the plague bacillus, which incorporates nascent RNA synthesis. A fluorescent in situ hybridization (FISH) assay using peptide nucleic acid (PNA) probes was developed specifically to differentiate Y. pestis strains from closely related bacteria. PNA probes were chosen to target high copy mRNA of the Y. pestis caf1 gene, encoding the Fraction 1 (F1) antigen, and 16S ribosomal RNA. Among Yersinia strains tested, PNA probes Yp-16S-426 and Yp-F1-55 exhibited binding specificities of 100% and 98%, respectively. Y. pestis grown in the presence of competing bacteria, as might be encountered when recovering Y. pestis from environmental surfaces in a post-release bioterrorism event, was recognized by PNA probes and neither hybridization nor fluorescence was inhibited by competing bacterial strains which exhibited faster growth rates. Using fluorescence microscopy, individual Y. pestis bacteria were clearly differentiated from competing bacteria with an average detection sensitivity of 7.9x10(3) cells by fluorescence microscopy. In the current system, this would require an average of 2.56x10(5) viable Y. pestis organisms be recovered from a post-release environmental sample in order to achieve the minimum threshold for detection. The PNA-FISH assays described in this study allow for the sensitive and specific detection of viable Y. pestis bacteria in a timely manner.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号