Contrasting effects of IG20 and its splice isoforms, MADD and DENN-SV, on tumor necrosis factor alpha-induced apoptosis and activation of caspase-8 and -3 |
| |
Authors: | Al-Zoubi A M Efimova E V Kaithamana S Martinez O El-Idrissi M El-A Dogan R E Prabhakar B S |
| |
Affiliation: | Department of Microbiology and Immunology, University of Illinois, 835 South Wolcott Ave., Chicago, IL 60612, USA. |
| |
Abstract: | We identified a novel cDNA (IG20) that is homologous to cDNAs encoding a protein differentially expressed in normal and neoplastic cells (DENN-SV) and human MADD (MAPK-activating death domain-containing protein). Furthermore, we show that the above variants most likely result from alternative splicing of a single gene. Functional analyses of these variants in permanently transfected HeLa cells revealed that IG20 and DENN-SV render them more susceptible or resistant to tumor necrosis factor alpha (TNF-alpha)-induced apoptosis, respectively. All variants tested could interact with TNF receptor 1 and activate ERK and nuclear factor kappaB. However, relative to control cells, only cells expressing IG20 showed enhanced TNF-alpha-induced activation of caspase-8 and -3, whereas cells expressing DENN-SV showed either reduced or no caspase activation. Transfection of these cells with a cDNA encoding CrmA maximally inhibited apoptosis in HeLa-IG20 cells. Our results show that IG20 can promote TNF-alpha-induced apoptosis and activation of caspase-8 and -3 and suggest that it may play a novel role in the regulation of the pleiotropic effects of TNF-alpha through alternative splicing. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|