首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Impact of nano-topography on bacterial attachment
Authors:Mitik-Dineva Natasa  Wang James  Mocanasu Radu C  Stoddart Paul R  Crawford Russell J  Ivanova Elena P
Institution:Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn, Australia.
Abstract:The adhesion of bacteria to surfaces is an important biological process, but one that has resisted simple categorization due to the number and complexity of parameters involved. The roughness of the substrate is known to play a significant role in the attachment process, particularly when the surface irregularities are comparable to the size of the bacteria and can provide shelter from unfavorable environmental factors. According to this scenario, roughness on a scale much smaller than the bacteria would not be expected to influence the initial attachment. To test this hypothesis, the impact of nanometer-scale roughness on bacterial attachment has been investigated using as-received and chemically etched glass surfaces. The surface modification by etching resulted in a 70% reduction in the nanoscale roughness of the glass surface with no significant alteration of its chemical composition or charge. Nevertheless, the number of bacteria adhering to the etched surface was observed to increase by a factor of three. The increase in attachment was also associated with an alteration in cellular metabolic activity as demonstrated by changes in characteristic cell morphologies and increased production of extracellular polymeric substances. The results indicate that bacteria may be more sensitive to nanoscale surface roughness than was previously believed.
Keywords:Bacterial attachment  Glass  Nano-scale roughness
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号