首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Water structural changes in the bacteriorhodopsin photocycle: analysis by Fourier transform infrared spectroscopy.
Authors:A Maeda  J Sasaki  Y Shichida  T Yoshizawa
Institution:Department of Biophysics, Faculty of Science, Kyoto University, Japan.
Abstract:The Fourier transform infrared difference spectra between light-adapted bacteriorhodopsin (BR) and its photointermediates, L and M, were analyzed for the 3750-3450-cm-1 region. The O-H stretching vibrational bands were identified from spectra upon substitution with 2H2O. Among them, the 3642-cm-1 band of BR was assigned to water by substitution with H2(18)O. By a comparison with the published infrared spectra of the water in model systems Mohr, S.C., Wilk, W.D., & Barrow, G.M. (1965) J. Am. Chem. Soc. 87, 3048-3052], it is shown that the O-H bonds of the water in BR interact very weakly. Upon formation of L, the interaction becomes stronger. The O-H bonds of the protein side chain undergo similar changes. On the other hand, M formation further weakens the interaction of the same water molecules in BR. The appearance of a sharp band at 3486 cm-1, which was assigned tentatively to the N-H stretching vibration of the peptide bond, is unique to L. The results suggest that the water molecules are involved in the perturbation of Asp-96 in the L intermediate and that they are exerted from the protonated Schiff base which changes position upon the light-induced reaction.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号