首页 | 本学科首页   官方微博 | 高级检索  
     


Discovery and investigation of a new, second triose phosphate isomerase in Klebsiella pneumoniae
Authors:Zheng Ping  Sun Jibin  van den Heuvel Joop  Zeng An-Ping
Affiliation:GBF-German Research Center for Biotechnology, Research Group Systems Biology, Mascheroder Weg 1, 38124 Braunschweig, Germany.
Abstract:
In this study, a tpi1 gene encoding for the enzyme triose phosphate isomerase in Klebsiella pneumoniae DSM2026 was knocked out in an effort to metabolically engineer this strain as a model system for the production of 1,3-propanediol. Investigations of the tpi1 knockout mutant led to the discovery of a second tpi gene (tpi2) in this organism. The new tpi2 gene was cloned and sequenced. The coding region of the tpi2 gene contains 795bp (base pairs) and the deduced protein consists of 265 amino acids. Sequence comparison of TPI2 proteins in different organisms revealed the presence of a highly conserved signature A-Y-E-P-V-W-A-I-G-[EDVS]-[GKNASH], which is nearly the same as the reported TPI consensus signature. The tpi1 gene of K. pneumoniae DSM2026 shows a high sequence similarity to that of E. coli, whereas, the tpi2 gene resembles more its relatives in the alpha-proteobacteria, suggesting that they evolve from different ancestors. The overexpression of the tpi2 gene restores the growth deficiency of tpi1 knockout mutant on the minimal medium containing glucose or glycerol. Furthermore, the catalytic activity of this new triose phosphate isomerase was confirmed in both tpi1 knockout mutant and tpi2 over-expressing strain by enzyme assays. For the first time, the co-existence of two tpi genes in an enteric bacterium is experimentally confirmed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号