首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Patterns in a species‐rich tropical understory plant community
Authors:Julie S Denslow  Luis Guillermo Chaverri S  Orlando Vargas R
Abstract:Understory plants are an important component of the high plant species diversity characteristic of neotropical rain forests. Herbs, shrubs, understory trees, and saplings of canopy trees occupy a broadly uniform environment of abundant rainfall, low light levels, and high humidity. We asked whether this community at the La Selva Biological Station in the Caribbean lowlands of Costa Rica was structured by environmental filters such as soil origin, topographic position, and understory light availability. We used nested quadrats to assess effects of soil origin (recent alluvium, weathered alluvium, residual volcanic soil) and topographic position (ridges, mid‐slopes and flats) on species composition, density, and diversity and measured six edaphic and understory light parameters. Non‐metric multidimensional scaling ordinations were based on frequency of occurrence in 20 quadrats for 272 species in the shrub size class and 136 species in the small‐tree size class for 17 sites. Three axes were correlated with composite environmental variables produced by principal component analysis representing slope, extractable phosphorus, and light. NMS site positions also reflected soil origin, topographic position, and geographic location. The analyses illustrated a complex community structured by species responses to environmental filters at multiple, interdigitated spatial scales. We suggest that light availability affected by canopy dynamics and dispersal limitation provides additional sources of variation in species distributions, which interact with edaphic patterns in complex ways. Abstract in Spanish is available with online material.
Keywords:La Selva Biological Station  light patches  NMS ordination  phosphorus  rain forest  soil catena  spatial pattern  topography
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号