首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transmembrane helix-helix association: relative stabilities at low pH
Authors:Valluru Neelima  Silva Frances  Dhage Manmath  Rodriguez Gustavo  Alloor Srinivas R  Renthal Robert
Institution:Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA.
Abstract:We have previously studied the unfolding equilibrium of bacterioopsin in a single phase solvent, using F?rster mechanism fluorescence resonance energy transfer (FRET) as a probe, from tryptophan donors to a dansyl acceptor. We observed an apparent unfolding transition in bacterioopsin perturbed by increasing ethanol concentrations Nannepaga et al. (2004) Biochemistry 43, 50-59]. We have further investigated this transition and find that the unfolding is pH-dependent. We have now measured the apparent pK of acid-induced unfolding of bacterioopsin in 90% ethanol. When the acceptor is on helix B (Lys 41), the apparent pK for unfolding is 4.75; on the EF connecting loop (Cys 163), 5.15; and on helix G (Cys 222), 5.75. Five-helix proteolytic fragments are less stable. The apparent unfolding pKs are 5.46 for residues 72-248 (Cys 163) and 7.36 for residues 1-166 (Lys 41). When interpreted in terms of a simple equilibrium model for unfolding, the apparent pKs give relative free energies of unfolding in the range of -0.54 to -3.5 kcal/mol. The results suggest that the C-terminal helix of bacterioopsin is less stably folded than the N-terminal helices. We analyzed the pairwise helix-helix interaction surfaces of bacteriorhodopsin and three other seven-transmembrane-helix proteins on the basis of crystal structures. The results show that the interaction surfaces are smoother and the helix axis separations are closer in the amino-terminal two-thirds of the proteins compared with the carboxyl-terminal one-third. However, the F helix is important in stabilizing the folded structure, as shown by the instability of the 1-166 fragment. Considering the high-resolution crystal structure of bacteriorhodopsin, there are no obvious helix-helix interactions involving protein side chains which would be destabilized by protonation at the estimated pH of the unfolding transitions. However, a number of helix-bridging water molecules could become protonated, thereby weakening the helix-helix interactions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号