首页 | 本学科首页   官方微博 | 高级检索  
     


Articulated external fixation of the ankle: minimizing motion resistance by accurate axis alignment
Authors:Bottlang M  Marsh J L  Brown T D
Affiliation:Biomedical Engineering, The University of Iowa, Iowa City 52240, USA.
Abstract:This study describes how an optimal single hinge axis position can be established for the application of articulated external fixation to the ankle joint. By deliberately introducing various amounts of relative mal-alignment between the optimal talocrural joint axis and the actual fixator hinge axis, it was possible to measure the corresponding amounts of additional resistance to joint motion. In a cadaveric study of six ankle specimens, we determined the instant axis of rotation of the talocrural joint from 3-D kinematic data. acquired by an electromagnetic motion tracking system. For each specimen, an optimal fixator hinge position was calculated from these motion data. Compared to the intact natural joint, aligning the fixator along the optimized axis position caused a moderate increase in energy (0.14 J) needed to rotate the ankle through a prescribed plantar/dorsiflexion range. However, malpositioning the hinge by 10 mm caused more than five times that amount of increase in motion resistance. While articulated external fixation with limited internal fixation can establish a favorable environment for the repair of severe injuries such as tibial pilon fractures, the large additional resistance to motion accompanying a malpositioned fixator axis suggests the development of untoward intra-articular forces that could act to disturb fragment alignment.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号