首页 | 本学科首页   官方微博 | 高级检索  
     


Microbial Community Analysis of Anodes from Sediment Microbial Fuel Cells Powered by Rhizodeposits of Living Rice Plants
Authors:Liesje De Schamphelaire  Angela Cabezas  Massimo Marzorati  Michael W. Friedrich  Nico Boon  Willy Verstraete
Affiliation:Laboratory of Microbial Ecology and Technology, Ghent University, Ghent, Belgium,1. Max Planck Institute for Terrestrial Microbiology, Marburg, Germany2.
Abstract:By placing the anode of a sediment microbial fuel cell (SMFC) in the rhizosphere of a rice plant, root-excreted rhizodeposits can be microbially oxidized with concomitant current generation. Here, various molecular techniques were used to characterize the composition of bacterial and archaeal communities on such anodes, as influenced by electrical circuitry, sediment matrix, and the presence of plants. Closed-circuit anodes in potting soil were enriched with Desulfobulbus-like species, members of the family Geobacteraceae, and as yet uncultured representatives of the domain Archaea.Living plants release substantial amounts of carbon in the soil as rhizodeposits, which are to a large extent transformed into the greenhouse gas methane in wetlands (21). It was recently demonstrated (8, 33) that the rhizodeposits can be harvested by plant microbial fuel cells (plant MFCs) and transformed into electricity. In its most straightforward form, a plant MFC is an adaptation of a sediment MFC (SMFC), which has an anode buried in (planted) sediment, allowing (microbial) oxidation of reduced compounds, and a cathode in the overlying water.The roots and surrounding rhizosphere in a plant SMFC add an extra parameter to the as yet multifaceted SMFC system. In the present study, two molecular profiling techniques (denaturing gradient gel electrophoresis [DGGE] and terminal restriction fragment length polymorphism [T-RFLP]) will be applied to evaluate the effect of plant presence, support material, operation of the electrical circuit, and anode depth on the bacterial and archaeal communities associated with rice SMFC anodes. Phylogenetic analysis will give further insight in their composition.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号