Presence and Characterization of Shiga Toxin-Producing Escherichia coli and Other Potentially Diarrheagenic E. coli Strains in Retail Meats |
| |
Authors: | Xiaodong Xia Jianghong Meng Patrick F. McDermott Sherry Ayers Karen Blickenstaff Thu-Thuy Tran Jason Abbott Jie Zheng Shaohua Zhao |
| |
Affiliation: | Department of Nutrition and Food Science,1. Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, Maryland 20742,2. Center for Veterinary Medicine, Food and Drug Administration, Laurel, Maryland 20708,3. Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland 207404. |
| |
Abstract: | To determine the presence of Shiga toxin-producing Escherichia coli (STEC) and other potentially diarrheagenic E. coli strains in retail meats, 7,258 E. coli isolates collected by the U.S. National Antimicrobial Resistance Monitoring System (NARMS) retail meat program from 2002 to 2007 were screened for Shiga toxin genes. In addition, 1,275 of the E. coli isolates recovered in 2006 were examined for virulence genes specific for other diarrheagenic E. coli strains. Seventeen isolates (16 from ground beef and 1 from a pork chop) were positive for stx genes, including 5 positive for both stx1 and stx2, 2 positive for stx1, and 10 positive for stx2. The 17 STEC strains belonged to 10 serotypes: O83:H8, O8:H16, O15:H16, O15:H17, O88:H38, ONT:H51, ONT:H2, ONT:H10, ONT:H7, and ONT:H46. None of the STEC isolates contained eae, whereas seven carried enterohemorrhagic E. coli (EHEC) hlyA. All except one STEC isolate exhibited toxic effects on Vero cells. DNA sequence analysis showed that the stx2 genes from five STEC isolates encoded mucus-activatable Stx2d. Subtyping of the 17 STEC isolates by pulsed-field gel electrophoresis (PFGE) yielded 14 distinct restriction patterns. Among the 1,275 isolates from 2006, 11 atypical enteropathogenic E. coli (EPEC) isolates were identified in addition to 3 STEC isolates. This study demonstrated that retail meats, mainly ground beef, were contaminated with diverse STEC strains. The presence of atypical EPEC strains in retail meat is also of concern due to their potential to cause human infections.Escherichia coli is an important component of the intestinal microflora of humans and warm-blooded mammals. While E. coli typically harmlessly colonizes the intestinal tract, several E. coli clones have evolved the ability to cause a variety of diseases within the intestinal tract and elsewhere in the host. Those strains that cause enteric infections are generally called diarrheagenic E. coli strains, and their pathogenesis is associated with a number of virulence attributes, which vary according to pathotype (54). Currently, diarrheagenic E. coli strains are classified into six main pathotypes based on their distinct virulence determinants and pathogenic features, including enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enterohemorrhagic E. coli (EHEC)/Shiga toxin-producing E. coli (STEC), enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAEC), and diffusively adherent E. coli (DAEC) (37).Among diarrheagenic E. coli strains, STEC strains are distinguished by the ability to cause severe life-threatening complications, such as hemolytic-uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP) (30). Other symptoms of STEC infection include watery diarrhea, bloody diarrhea, and hemorrhagic colitis (HC). STEC strains that cause HC and HUS are also called EHEC. Although individuals of all ages are at risk of STEC infection, children younger than 5 years of age and the elderly are more likely to suffer from severe complications (51). Outbreaks and sporadic cases of STEC infections have been reported frequently worldwide.The pathogenesis of STEC infection in humans is not fully understood. The major virulence factors implicated in STEC infection are potent Shiga toxins, which are classified into two groups: Stx1 and Stx2 (23). Additional factors that contribute to virulence have also been described, including intimin (encoded by the eae gene), an outer membrane protein involved in the attachment of E. coli to the enterocyte, and EHEC hemolysin (encoded by EHEC hlyA), which acts as a pore-forming cytolysin and causes damage to cells (41).The first STEC O157 infections were reported in 1982, when E. coli O157:H7 was involved in outbreaks associated with two fast food chain restaurants in the United States (44). Since then, ever-increasing numbers of cases and outbreaks due to STEC O157 have been reported worldwide. Although non-O157 STEC strains have also been associated with human cases and outbreaks, few laboratories have been looking for them, and their potential in causing human infections may be underestimated (2). Recently, though, the significance of non-O157 STEC strains as human pathogens has become more recognized. In the United States alone, there were 23 reported outbreaks of non-O157 STEC infection between 1990 and 2007 (10).Shiga toxin-producing E. coli can be transmitted through different routes, including food and water, person-to-person contact, and animal-to-person contact (9). Most human infections are caused by consumption of contaminated foods (16). Domestic and wild ruminant animals, in particular cattle, are considered the main reservoir of STEC and the main source for contamination of the food supply. Retail meats derived from animals could potentially act as transmission vehicles for STEC and other diarrheagenic E. coli strains. However, there is limited information about STEC contamination in retail meats, and fewer data exist about the presence of other diarrheagenic E. coli strains in retail meats. In the present study, we investigated 7,258 E. coli isolates from four types of meat samples (beef, chicken, pork, and turkey) collected during 2002 to 2007 to assess STEC contamination of retail meats. In addition, the presence of other potentially diarrheagenic E. coli strains was examined by detecting specific virulence determinants among E. coli isolates collected in 2006. |
| |
Keywords: | |
|
|