首页 | 本学科首页   官方微博 | 高级检索  
     


Catalysis in glycine N-methyltransferase: testing the electrostatic stabilization and compression hypothesis
Authors:Soriano Alejandro  Castillo Raquel  Christov Christo  Andrés Juan  Moliner Vicente  Tuñón Iñaki
Affiliation:Departament de Ciències Experimentals, Universitat Jaume I, 12071 Castellón, Spain.
Abstract:Glycine N-methyltransferase (GNMT) is an S-adenosyl-l-methionine dependent enzyme that catalyzes glycine transformation to sarcosine. Here, we present a hybrid quantum mechanics/molecular mechanics (QM/MM) computational study of the reaction compared to the counterpart process in water. The process takes place through an SN2 mechanism in both media with a transition state in which the transferring methyl group is placed in between the donor (SAM) and the acceptor (the amine group of glycine). Comparative analysis of structural, electrostatic, and electronic characteristics of the in-solution and enzymatic transition states allows us to get a deeper insight into the origins of the enzyme's catalytic power. We found that the enzyme is able to stabilize the substrate in its more active basic form by means of a positively charged residue (Arg175) placed in the active site. However, the maximum stabilization is attained for the transition state. In this case, the enzyme is able to form stronger hydrogen bonds with the positively charged amine group. Finally, we show that in agreement with previous computational studies on other methyltransferases, there is no computational evidence for the compression hypothesis, as was formulated by Schowen (Hegazi, M. F., Borchardt, R. T., and Schowen, R. L. (1979) J. Am. Chem. Soc. 101, 4359-4365).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号