首页 | 本学科首页   官方微博 | 高级检索  
   检索      


THE EVOLUTION OF RNA POLYMERASE II IN RED ALGAE
Authors:Stiller  JW  Riley  J L  & Hall  BD
Institution:Department of Biological Sciences, University of Iowa, Iowa City, IA 52242 USA;;Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
Abstract:Cryptophytes are photosynthetic protists that have acquired their plastids through the secondary symbiotic uptake of a red alga. A remarkable feature of cryptophytes is that they maintain a reduced form of the red algal nucleus, the nucleomorph, between the second and third plastid membranes (periplastidial compartment, PC). The nucleomorph is thought to be a transition state in the evolution of secondary plastids with this genome ultimately being lost (e.g., as in heterokonts, haptophytes, euglenophytes) when photosynthesis comes under full control of the "host" nucleus. For this to happen, all genes for plastid function must be transferred from the nucleomorph to the nucleus. In this regard, it is generally assumed that nucleomorph genes with functions unrelated to plastid or PC maintenance are lost. Surprisingly, we show here the existence of a novel type of actin gene in the host nucleus of the cryptophyte, Pyrenomonas helgolandii , that has originated from the nucleomorph genome of the symbiont. Our results demonstrate for the first time that secondary symbionts can contribute genes to the host lineage that are unrelated to plastid function. These genes are akin to the products of gene duplication and provide a source of evolutionary novelty that could significantly increase the genetic diversity of the host lineage. We postulate that this may be a common phenomenon in algae containing secondary plastids that has yet to be fully appreciated due to a dearth of evolutionary studies of nuclear genes in these taxa.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号