首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Viscoelastic study of the mechanical unfolding of a protein by AFM
Authors:Kawakami Masaru  Byrne Katherine  Brockwell David J  Radford Sheena E  Smith D Alastair
Institution:Institute of Molecular Biophysics, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
Abstract:We have applied a dynamic force modulation technique to the mechanical unfolding of a homopolymer of immunoglobulin (Ig) domains from titin, (C47S C63S I27)5, (I27)5] to determine the viscoelastic response of single protein molecules as a function of extension. Both the stiffness and the friction of the homopolymer system show a sudden decrease when a protein domain unfolds. The decrease in measured friction suggests that the system is dominated by the internal friction of the (I27)5 molecule and not solvent friction. In the stiffness-extension spectrum we detected an abrupt feature before each unfolding event, the amplitude of which decreased with each consecutive unfolding event. We propose that these features are a clear indication of the formation of the known unfolding intermediate of I27, which has been observed previously in constant velocity unfolding experiments. This simple force modulation AFM technique promises to be a very useful addition to constant velocity experiments providing detailed viscoelastic characterization of single molecules under extension.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号