Nitrification and utilization of ammonium and nitrate during oil bioremediation at different soil water potentials |
| |
Authors: | Z. Z. Chang R. W. Weaver |
| |
Affiliation: | 1. Soil and Crop Sciences Deptartment , Texas A&2. M University , College Station, TX, 77843–2474 |
| |
Abstract: | Bioremediation of petroleum spills requires aerobic soil conditions and readily available N, which may be susceptible to leaching. Our objectives were to determine the influence of soil water potential on nitrification in the presence of crude oil, the toxicity of oil to NHj‐oxidizing bacteria, and the preferences of microorganisms for NH+ 4 or NO? 3. A Weswood clay loam was amended with crude oil to contain 0, 5, and 10% by soil dry weight, and N was added to achieve C:N ratios of 90:1 and 120:1. Soil water potentials were maintained at ‐0.02, ‐0.1, and ‐1.0 kJ/kg or allowed to fluctuate between ‐0.02 and ‐3 kJ/kg. Concentrations of NH+ 4 and NO3 ?were measured during an incubation period of 40 d. Nitrification in soil not amended with oil was rapid at water potentials of ‐0.02 and ‐0.1 kJ/kg but inactive at a water potential of ‐1.0 kJ/kg. Oil reduced nitrification rates and populations of NH+ 4‐oxidizing bacteria. Little NO? 3 accumulated when the C:N ratio was 120:1, but when the C:N ratio was 90:1, up to 150 μg of NO3‐N/g of soil accumulated at a soil water potential of ‐0.02 kJ/kg. Soil water potential in the range used did not greatly influence the extent of oil bioremediation but significantly influenced nitrification. Ammonium was preferentially used over NO? 3 by microorganisms during oil bioremediation. Nitrate accumulation from urea applied to stimulate oil bioremediation was low when N application matched requirements for oil bioremediation, and nitrification was restricted by controlling soil water content. |
| |
Keywords: | oil biodegradation nitrification water potential nitrate |
|
|