首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Strategies for Positioning Fluorescent Probes and Crosslinkers on Formyl Peptide Ligands
Abstract:Abstract

Chemoattractant receptors represent a major subset of the G-protein coupled receptor (GPCR) family. One of the best characterized, the N-formyl peptide receptor (FPR), participates in host defense responses of neutrophils. The features of the ligand which regulate its interaction with the FPR are well-known. By manipulating these features we have developed new ligands to probe structural and mechanistic aspects of the peptide-receptor interaction. Three ligand groups have been developed: 1) ligands containing a Lys residue located in positions 2 through 7 that can be conjugated to FITC (N-formyl-Met1-Lys2-Phe3-Phe4, N-formyl-Met1-Leu2-Lys3-Phe4, N-formyl-Met1-Leu2-Phe3-Lys4, N-formyl-Met1-Leu2-Phe3-Phe4-Lys5, N-formyl-nLeu1-Leu2-Phe3-nLeu4-Tyr5-Lys6 and N-formyl-Met1-Leu2-Phe3-Phe4-Gly5-Gly6-Lys7; 2) fluorescent pentapeptide ligands (N-formyl-Met-X-Phe-Phe-Lys(FITC) where X = Leu, Ala, Val or Gly); and 3) small crosslinking ligands where the photoaffinity crosslinker 4-azidosalicylic acid (ASA) was conjugated to Lys in positions 3 and 4 and p-benzoyl-phenylalanine (Bpa) was located in position 2 in N-formyl-Met1-Bpa2-Phe3-Tyr4. The peptides were characterized according to activity and affinity in human neutrophils and cell lines transfected with FPR. All of the peptides were agonists, with parallel affinity and activity. In the first group, the peptide activity decreases as Lys is placed closer to the N-formyl group and the activity is improved by 1–3 orders of magnitude by conjugation with FITC. In the second group, the dissociation rate of the peptide from the receptor increases as position 2 is replaced by aliphatic amino acids with smaller alkyl groups. In the third group, crosslinking ligands remain biologically active, display nM affinity and covalently label the FPR.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号