首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Triad formation: organization and function of the sarcoplasmic reticulum calcium release channel and triadin in normal and dysgenic muscle in vitro
Abstract:Excitation-contraction (E-C) coupling is thought to involve close interactions between the calcium release channel (ryanodine receptor; RyR) of the sarcoplasmic reticulum (SR) and the dihydropyridine receptor (DHPR) alpha 1 subunit in the T-tubule membrane. Triadin, a 95- kD protein isolated from heavy SR, binds both the RyR and DHPR and may thus participate in E-C coupling or in interactions responsible for the formation of SR/T-tubule junctions. Immunofluorescence labeling of normal mouse myotubes shows that the RyR and triadin co-aggregate with the DHPR in punctate clusters upon formation of functional junctions. Dysgenic myotubes with a deficiency in the alpha 1 subunit of the DHPR show reduced expression and clustering of RyR and triadin; however, both proteins are still capable of forming clusters and attaining mature cross-striated distributions. Thus, the molecular organization of the RyR and triadin in the terminal cisternae of SR as well as its association with the T-tubules are independent of interactions with the DHPR alpha 1 subunit. Analysis of calcium transients in dysgenic myotubes with fluorescent calcium indicators reveals spontaneous and caffeine-induced calcium release from intracellular stores similar to those of normal muscle; however, depolarization-induced calcium release is absent. Thus, characteristic calcium release properties of the RyR do not require interactions with the DHPR; neither do they require the normal organization of the RyR in the terminal SR cisternae. In hybrids of dysgenic myotubes fused with normal cells, both action potential- induced calcium transients and the normal clustered organization of the RyR are restored in regions expressing the DHPR alpha 1 subunit.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号