首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ecto 5'-nucleotidase and nonspecific alkaline phosphatase. Two AMP-hydrolyzing ectoenzymes with distinct roles in human airways
Authors:Picher Maryse  Burch Lauranell H  Hirsh Andrew J  Spychala Josef  Boucher Richard C
Institution:Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA. pichm@med.unc.edu
Abstract:In human airways, extracellular adenosine regulates epithelial functions supporting mucociliary clearance, an important airway defense mechanism against bacterial infection. Thus, defining the mechanisms of adenosine generation is critical for elucidating the role of this nucleoside in airway homeostasis. In this study, we identified the source of adenosine on the mucosal surface of human airway epithelia. Polarized primary cultures of human nasal or bronchial epithelial cells were assayed for transepithelial transport, cytosolic and cell surface adenosine production. Ussing chamber experiments indicated that serosal 1 microM (3)H]adenosine was not transported to the mucosal compartment. Messenger RNA for the cytosolic AMP-specific 5'-nucleotidase (CN-I) was not detected in human bronchial epithelial cells, suggesting that mucosal adenosine did not originate from intracellular pools. In contrast, extracellular 0.1 mm ATP was rapidly dephosphorylated into adenosine on the mucosal epithelial surface. We identified two ectonucleotidases that mediated the conversion of AMP to adenosine: ecto 5'-nucleotidase (ecto 5'-NT, CD73) and alkaline phosphatase (AP). Both mucosal and serosal epithelial surfaces displayed ecto 5'-NT activity (K(m) = 14 microM, V(max) = 0.5 nmol x min(-1) x cm(-2)), whereas AP activity was restricted to the mucosal surface (K(m,)(high) = 36 microM, V(max) = 1.2 nmol x min(-1) x cm(-2); K(m,)(low) = 717 microM, V(max) = 2.8 nmol x min(-1) x cm(-2)). In bronchial cultures and tissues, ecto 5'-NT accounted for >80% of total activity toward 0.01 mm AMP, compared with <15% for 5 mm AMP. The proximal airway AP isoform was identified as nonspecific AP (NS AP) by levamisole sensitivity and mRNA expression. The two ectoenzymes presented opposite airway distributions, ecto 5'-NT and NS AP mRNA dominating in higher and lower airways, respectively. Collectively, these experiments support a major role for extracellular nucleotide catalysis and for ecto 5'-NT and NS AP in the regulation of adenosine concentrations on airway surfaces.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号