首页 | 本学科首页   官方微博 | 高级检索  
     


Cross-talk between bone morphogenetic protein and transforming growth factor-beta signaling is essential for exendin-4-induced insulin-positive differentiation of AR42J cells
Authors:Yew Kok-Hooi  Hembree Mark  Prasadan Krishna  Preuett Barry  McFall Christopher  Benjes Christina  Crowley Amanda  Sharp Susan  Tulachan Sidhartha  Mehta Sheilendra  Tei Eri  Gittes George
Affiliation:Department of Surgery Research, The Children's Mercy Hospital, Kansas City, Missouri 64108, USA.
Abstract:A key goal of cellular engineering is to manipulate progenitor cells to become beta-cells, allowing cell replacement therapy to cure diabetes mellitus. As a paradigm for cell engineering, we have studied the molecular mechanisms by which AR42J cells become beta-cells. Bone morphogenetic proteins (BMPs), implicated in a myriad of developmental pathways, have not been well studied in insulin-positive differentiation. We found that the canonical intracellular mediators of BMP signaling, Smad-1 and Smad-8, were significantly elevated in AR42J cells undergoing insulin-positive differentiation in response to exendin-4 treatment, suggesting a role for BMP signaling in beta-cell formation. Similarly, endogenous BMP-2 ligand and ALK-1 receptor (activin receptor-like kinase-1; known to activate Smads 1 and 8) mRNAs were specifically up-regulated in exendin-4-treated AR42J cells. Surprisingly, Smad-1 and Smad-8 levels were suppressed by the addition of BMP-soluble receptor inhibition of BMP ligand binding to its receptor. Here, insulin-positive differentiation was also ablated. BMP-2 ligand antisense also strongly inhibited Smad-1 and Smad-8 expression, again with the abolition of insulin-positive differentiation. These results demonstrate a previously unrecognized key role for BMP signaling in mediating insulin-positive differentiation through the intracellular Smad signaling pathway. In short, BMP signaling may represent a novel downstream target of exendin-4 (glucagon-like peptide 1) signaling and potentially serve as an upstream regulator of transforming growth factor-beta isoform signaling to differentiate the acinar-like AR42J cells into insulin-secreting cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号